Topological applications of long ω_1 -approximation sequences II

David Milovich Texas A&M International University

2015 Winter School in Abstract Analysis Hejnice, Czech Republic Let P be a poset. For $p \in P$, let $p \uparrow = \{q : q \ge p\}$.

Definition (Peregudov). Define the Noetherian type Nt(P) of P to be the least infinite cardinal κ for which $|p\uparrow| < \kappa$ for all $p \in P$.

Define the Noetherian type Nt(X) of a topological space X to be the least $Nt(\mathcal{B})$ where \mathcal{B} is a base of X and \mathcal{B} is ordered with respect to \subset .

(Recall that a topological base is a family \mathcal{B} of open sets such that for every $p \in U$ with U open, some $B \in \mathcal{B}$ satisfies $p \in B \subset U$.) As a topological cardinal function, Nt is somewhat unusual. A few examples:

• If \mathcal{B} is a base of X, then $Nt(X^{|\mathcal{B}|}) = \aleph_0$. Hence, there are compact spaces X, Y such that $Nt(X \times Y) < max{Nt(X), Nt(Y)}$.

• There are Tychonoff spaces X, Y such that

 $Nt(X \times Y) < \min\{Nt(X), Nt(Y)\}.$

We do not know if there is a compact example of this. However, GCH implies that $Nt(X^n) = Nt(X)$ for all compact homogeneous X.

• The countably supported box product topology on $2^{\aleph_{\omega}}$ has Noetherian type in $[\aleph_1, \aleph_4]$, with \aleph_1 and \aleph_2 consistent, and the consistency of \aleph_3 and \aleph_4 unknown.

References

M. Kojman, D. Milovich, and S. Spadaro, *Noetherian type in topological products*, *Israel Journal of Mathematics* **202** (2014), 195– 225.

D. Milovich, Noetherian types of homogeneous compacta and dyadic compacta, Topology and its Applications **156** (2008), 443–464.

S. A. Peregudov, *On the Noetherian type of topological spaces*, Comment. Math. Univ. Carolin. **38** (1997), no. 3, 581–586.

A compact space is *dyadic* if it is a continuous image of some 2^{κ} .

If X is the quotient of $2^{\omega} \oplus 2^{\omega_1}$ induced by identifying $(0)_{n < \omega}$ and $(0)_{\alpha < \omega_1}$, then X is dyadic and $Nt(X) = \aleph_2$.

More generally, $Nt(X) > \kappa$ if κ is a regular cardinal, X is a space, $p \in X$, some local π -base at p is smaller than κ , and no local base at p is smaller than κ .

Recall that a local base (local π -base) at p is a coinitial family \mathcal{U} of open neighborhoods of p. That is, $p \in U$ ($U \neq \varnothing$) and U is open for all $U \in \mathcal{U}$, and if $p \in O$ and O is open, then $U \subset O$ for some $U \in \mathcal{U}$.

A space H is homogeneous if for all $p, q \in H$ there exists a homeomorphism $f: H \to H$ such that f(p) = q.

Theorem (Milovich, 2008). $Nt(X) = \aleph_0$ for all homogeneous dyadic compact X.

Corollary. $Nt(G) = \aleph_0$ for all compact groups G.

Proof. All topological groups are homogeneous. By the Ivanovskiī–Kuz'minov Theorem (1959), compact groups are also dyadic. \Box

The weight w(X) of a space X is the least infinite cardinal κ such that X has a base not larger than κ .

The π -character $\pi\chi(p, X)$ of a point p in a space X is the least infinite cardinal κ such that p has a local π -base not larger than κ .

Theorem (Gerlits, 1976; Efimov, 1977). If X is compact and dyadic, then $\sup_{p \in X} \pi \chi(p, X) = w(X)$.

Corollary. If X is compact, homogeneous, and dyadic, then, for all $p \in X$, $\pi \chi(p, X) = w(X)$.

Theorem (Milovich–Spadaro, 2014). If X is compact, κ is a regular uncountable cardinal, $w(X) \ge \kappa$, and $\pi\chi(p, X) < \kappa$ on a dense set of $p \in X$, then $Nt(X) > \kappa$.

Every metric space has Noetherian type \aleph_0 . Why? Take $\mathcal{B} = \bigcup_{n < \omega} \mathcal{R}_n$ where each \mathcal{R}_n is a locally finite open cover refining the balls of diameter 2^{-n} .

A topological base ${\mathcal B}$ is called *efficient* if

- it has Noetherian type \aleph_0 ,
- $U \subsetneq V \Rightarrow \overline{U} \subset V$ for all $U, V \in \mathcal{B}$, and
- for all infinite $\mathscr{S} \subset \mathcal{B}$, the set $\{T \in \mathcal{B} : \exists S \in \mathscr{S} \ S \subsetneq T\}$ is infinite.

Lemma. Every base of a compact metric space K contains an efficient base of K.

Proof. Given a base \mathcal{B} of K, we will choose a sequence $(\mathcal{A}_n)_{n < \omega}$ of finite open subcovers of \mathcal{B} such that $\mathcal{A} = \bigcup_{n < \omega} \mathcal{A}_n$ will be an efficient base.

Given $n < \omega$ and $(\mathcal{A}_m)_{m < n}$, choose, for each $p \in K$, an neighborhood N_p of p in \mathcal{B} sufficiently small that

- 1. diam $(N_p) \le 2^{-n}$,
- 2. $\overline{N_p} \subset \bigcap \{A : p \in A \in \bigcup_{m < n} \mathcal{A}_m\},\$
- 3. $N_p \cap A = \emptyset$ or $N_p = A$ for all singleton $A \in \bigcup_{m < n} \mathcal{A}_m$, and
- 4. diam (N_p) < diam(A) for all non-singleton $A \in \bigcup_{m < n} \mathcal{A}_m$.

Choose A_n to be a minimal (finite) subcover of $\{N_p : p \in K\}$.

Since $\max_{A \in \mathcal{A}_n} \operatorname{diam}(A) \leq 2^{-n}$, \mathcal{A} will be a base.

Since also each \mathcal{A}_n is finite, $Nt(\mathcal{A}) = \aleph_0$.

Since diam(A) < diam(B) for all m > n, $A \in \mathcal{A}_m$, and $B \in \mathcal{A}_n \setminus [K]^1$,

if $\mathcal{A}_i \ni U \supsetneq V \in \mathcal{A}_j$, then $i \leq j$.

Since also each \mathcal{A}_n is a minimal cover,

if
$$\mathcal{A}_i \ni U \supsetneq V \in \mathcal{A}_j$$
, then $i < j$.

Since also $\mathcal{A}_i \ni U \supsetneq V \in \mathcal{A}_j$ and i < j imply $U \supset \overline{V}$,

 $U \supseteq V \Rightarrow U \supset \overline{V}$ for all $U, V \in \mathcal{A}$.

Finally, given a finite $\mathcal{F} \subset \mathcal{A}$ and a non-repeating sequence $(U_n)_{n < \omega}$ of elements of \mathcal{A} , it suffices to find some U_n with a strict superset in $\mathcal{A} \setminus \mathcal{F}$.

Since $(U_n)_{n < \omega}$ is non-repeating and each \mathcal{A}_n is finite, we may pass to a subsequence $(V_n)_{n < \omega}$ of $(U_n)_{n < \omega}$ that diam $(V_n) \rightarrow 0$.

We may then pass to a subsequence $(W_n)_{n < \omega}$ such that $(\overline{W_n})_{n < \omega}$ converges to a singleton $\{p\}$ (in the (compact) Vietoris hyperspace).

Since $(W_n)_{n < \omega}$ is non-repeating, p is not an isolated point.

Hence, p has a neighborhoods $Y, Z \in \mathcal{A} \setminus \mathcal{F}$ such that $Y \subsetneq Z$.

For m sufficiently large, $W_m \subset Y \subsetneq Z$.

Let X be a compact space of uncountable weight κ . Without loss of generality, X is a subspace of $[0, 1]^{\kappa}$.

Let \mathcal{A} be a base of X of size κ and consisting only of nonempty open F_{σ} sets.

(To find such a base, take any base \mathcal{Z} of size κ and, for each finite subcover of \mathcal{Z} , choose a refining finite cover by open F_{σ} sets; take \mathcal{A} to be the union these refinements.)

Given a function f and a set I, let $f \upharpoonright I$ denote the restriction of f to $dom(f) \cap I$. Given a set E of functions, let $E \upharpoonright I$ denote $\{f \upharpoonright I : f \in E\}$. Given a set \mathcal{J} of sets of functions, let $\mathcal{J} \upharpoonright I = \{E \upharpoonright I : E \in \mathcal{J}\}$.

We say that $E \subset X$ is *supported* on a set I if, for all $p, q \in X$, if $p \upharpoonright I = q \upharpoonright I$, then $p \in E \Leftrightarrow q \in E$.

By compactness of X, every open F_{σ} set has a countable support.

Assume that there is a continuous surjection $h: 2^{\lambda} \to X$.

Let $(M_{\alpha})_{\alpha < \kappa}$ be a long ω_1 -approximation sequence with $\mathcal{A}, h \in M_0$.

Letting $\mathcal{A}_{\alpha} = \mathcal{A} \cap M_{\alpha}$, each $U \in \mathcal{A}_{\alpha}$ is supported on M_{α} . Why? Each $U \in \mathcal{A} \cap M_{\alpha}$ is supported on some countable C. M_{α} knows this; hence, we may choose $C \in M_{\alpha}$; hence, $C \subset M_{\alpha}$.

For each $\alpha < \kappa$, $\mathcal{A}_{\alpha} \upharpoonright M_{\alpha}$ is a base of $X \upharpoonright M_{\alpha}$.

Why? Given $p \in X$, if R is an open product of rational intervals such that $p \in R$ and $R \cap X$ is supported on M_{α} , then $R \cap X$ is supported on a finite $F \subset M_{\alpha}$ and there is a closed product Q of rational intervals such that $p \in Q \subset R$ and $Q \cap X$ is supported on F. M_{α} knows about a finite cover of $Q \cap X$ by elements of A with union contained in $R \cap X$. Hence, $p \in A \subset R \cap X$ and $A \in A \cap M_{\alpha}$ for some A in this cover. Hence, $p \upharpoonright M_{\alpha} \in A \upharpoonright M_{\alpha} \subset (R \cap X) \upharpoonright M_{\alpha}$ and $A \upharpoonright M_{\alpha}$ is open in $X \upharpoonright M_{\alpha}$ because A is supported on M_{α} . We may choose $\mathcal{Y}_{\alpha} \subset \mathcal{A}_{\alpha} \upharpoonright M_{\alpha}$ to be an efficient base of $X \upharpoonright M_{\alpha}$. (Why? Every compact space with countable weight is metrizable.)

Because each $A \in \mathcal{A}_{\alpha}$ is supported on M_{α} , there is a unique $\mathcal{W}_{\alpha} \subset \mathcal{A}_{\alpha}$ such that $\mathcal{Y}_{\alpha} = \mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$.

Given E a subset of a poset P, let $\uparrow E = \bigcup \{p \uparrow : p \in E\}$.

Let
$$\mathcal{V}_{\alpha} = \mathcal{W}_{\alpha} \setminus \uparrow \mathcal{W}_{<\alpha}$$
 where $\mathcal{W}_{<\alpha} = \bigcup_{\beta < \alpha} \mathcal{W}_{\beta}$.

Let $\mathcal{U}_{\alpha} = \{ U \in \mathcal{V}_{\alpha} : \exists V \in \mathcal{V}_{\alpha} \ \overline{U} \subset V \}.$

Assume that $\min_{p \in X} \pi \chi(p, X) = \kappa$.

We claim that $\mathcal{U} = \mathcal{U}_{<\kappa}$ is a base of X with Noetherian type \aleph_0 .

First, we show that \mathcal{U} is a base.

Given $p \in A \in \mathcal{A}$, we need to find $U \in \mathcal{U}$ such that $p \in U \subset A$. Choose $\alpha < \kappa$ such that $A \in M_{\alpha}$. Then A is supported on M_{α} just as each $U \in \mathcal{U}_{\alpha}$ is, so it suffices to show that $\mathcal{U}_{\alpha} \upharpoonright M_{\alpha}$ is a base of $X \upharpoonright M_{\alpha}$.

 \mathcal{U}_{α} is a downward-closed subset of \mathcal{W}_{α} . Therefore, $\mathcal{U}_{\alpha} \upharpoonright M_{\alpha}$ is a downard-closed subset of the base $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$. Hence, it suffices to show that $\mathcal{U}_{\alpha} \upharpoonright M_{\alpha}$ covers $X \upharpoonright M_{\alpha}$.

Because $\mathcal{A}_{<\alpha}$ is too small to contain a local π -base, M_{α} knows about a finite cover of X by elements of $\mathcal{A} \setminus \uparrow \mathcal{A}_{<\alpha}$. We have $p \in T \in M_{\alpha}$ for some T in this cover.

 $T \upharpoonright M_{\alpha}$ is open, so we may choose $R, S \in \mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$ such that

$$p \upharpoonright M_{\alpha} \in \overline{R} \subset S \subset T \upharpoonright M_{\alpha}.$$

R meets all the requirements for being in $\mathcal{U}_{\alpha} \upharpoonright M_{\alpha}$.

It remains to show that $Nt(\mathcal{U}) = \aleph_0$.

For this, we must actually use the continuous surjection $h: 2^{\lambda} \to X$.

Let \mathcal{B} denote the clopen algebra $\operatorname{Clop}(2^{\lambda})$.

Since $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base, for each α and $W \in \mathcal{W}_{\alpha}$, there is an $E_{\alpha,W} \in \mathcal{B} \cap M_{\alpha}$ such that

$$h^{-1}[\overline{W}] \subset E_{\alpha,W} \subset \bigcap \{h^{-1}[Z] : \overline{W} \subset Z \in \mathcal{W}_{\alpha}\}$$

because only there are only finitely many Z as above.

Letting $\mathcal{E}_{\alpha} = \{ E_{\alpha, W} : W \in \mathcal{W}_{\alpha} \}$, we have $Nt(\mathcal{E}_{\alpha}) = \aleph_0$.

Why? If $E_{\alpha,R} \subsetneq E_{\alpha,S_m} \neq E_{\alpha,S_n}$ for all $m < n < \omega$, then, for all $m < \omega$ and $\overline{S_m} \subset T \in \mathcal{W}_{\alpha}$, we have $R \subset T$. By the definition of efficient base, there are infinitely many T as above, in contradiction with $Nt(\mathcal{W}_{\alpha}) = \aleph_0$. Let $\mathcal{D}_{\alpha} = \{ E_{\alpha,U} : U \in \mathcal{U}_{\alpha} \}$. We have $Nt(\mathcal{D}_{\alpha}) = \aleph_0$ because $\mathcal{D}_{\alpha} \subset \mathcal{E}_{\alpha}$. Let $\mathcal{C} = \mathcal{B} \cap \uparrow \{ h^{-1}[U] : U \in \mathcal{U} \}$.

Let $\mathcal{C}_{\alpha} = \mathcal{C} \cap M_{\alpha}$. Note that $\mathcal{D}_{\alpha} \subset \mathcal{C}_{\alpha}$.

Letting $\mathcal{D} = \mathcal{D}_{<\kappa}$, we claim that $Nt(\mathcal{D}) = \aleph_0$.

To prove this, it suffices to show that, for all $\alpha < \kappa$ and $H \in C_{<\alpha}$,

1. $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,

2. $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and

3. $H \uparrow \cap \mathcal{D}_{\alpha} = \emptyset$.

To be continued...