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Let P be a poset. For p ∈ P , let p↑= {q : q ≥ p}.

Definition (Peregudov). Define the Noetherian type Nt(P ) of P to

be the least infinite cardinal κ for which |p↑| < κ for all p ∈ P .

Define the Noetherian type Nt(X) of a topological space X to be

the least Nt(B) where B is a base of X and B is ordered with respect

to ⊂.

(Recall that a topological base is a family B of open sets such that

for every p ∈ U with U open, some B ∈ B satisfies p ∈ B ⊂ U .)
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As a topological cardinal function, Nt is somewhat unusual. A few

examples:

• If B is a base of X, then Nt(X |B|) = ℵ0. Hence, there are compact

spaces X, Y such that Nt(X × Y ) < max{Nt(X),Nt(Y )}.

• There are Tychonoff spaces X, Y such that

Nt(X × Y ) < min{Nt(X),Nt(Y )}.

We do not know if there is a compact example of this. However,

GCH implies that Nt(Xn) = Nt(X) for all compact homogeneous X.

• The countably supported box product topology on 2ℵω has Noethe-

rian type in [ℵ1,ℵ4], with ℵ1 and ℵ2 consistent, and the consistency

of ℵ3 and ℵ4 unknown.
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A compact space is dyadic if it is a continuous image of some 2κ.

If X is the quotient of 2ω ⊕ 2ω1 induced by identifying (0)n<ω and

(0)α<ω1, then X is dyadic and Nt(X) = ℵ2.

More generally, Nt(X) > κ if κ is a regular cardinal, X is a space,

p ∈ X, some local π-base at p is smaller than κ, and no local base

at p is smaller than κ.

Recall that a local base (local π-base) at p is a coinitial family U of

open neighborhoods of p. That is, p ∈ U (U 6= ∅) and U is open for

all U ∈ U, and if p ∈ O and O is open, then U ⊂ O for some U ∈ U.
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A space H is homogeneous if for all p, q ∈ H there exists a homeo-

morphism f : H → H such that f(p) = q.

Theorem (Milovich, 2008). Nt(X) = ℵ0 for all homogeneous dyadic

compact X.

Corollary. Nt(G) = ℵ0 for all compact groups G.

Proof. All topological groups are homogeneous. By the Ivanovskĭı–

Kuz′minov Theorem (1959), compact groups are also dyadic.
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The weight w(X) of a space X is the least infinite cardinal κ such

that X has a base not larger than κ.

The π-character πχ(p,X) of a point p in a space X is the least

infinite cardinal κ such that p has a local π-base not larger than κ.

Theorem (Gerlits, 1976; Efimov, 1977). If X is compact and dyadic,

then supp∈X πχ(p,X) = w(X).

Corollary. If X is compact, homogeneous, and dyadic, then, for all

p ∈ X, πχ(p,X) = w(X).

Theorem (Milovich–Spadaro, 2014). If X is compact, κ is a regular

uncountable cardinal, w(X) ≥ κ, and πχ(p,X) < κ on a dense set of

p ∈ X, then Nt(X) > κ.
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Every metric space has Noetherian type ℵ0. Why? Take B =⋃
n<ωRn where each Rn is a locally finite open cover refining the

balls of diameter 2−n.

A topological base B is called efficient if

• it has Noetherian type ℵ0,

• U ( V ⇒ U ⊂ V for all U, V ∈ B, and

• for all infinite S ⊂ B, the set {T ∈ B : ∃S ∈ S S ( T} is infinite.

Lemma. Every base of a compact metric space K contains an effi-

cient base of K.
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Proof. Given a base B of K, we will choose a sequence (An)n<ω of
finite open subcovers of B such that A =

⋃
n<ωAn will be an efficient

base.

Given n < ω and (Am)m<n, choose, for each p ∈ K, an neighborhood
Np of p in B sufficently small that

1. diam(Np) ≤ 2−n,

2. Np ⊂
⋂
{A : p ∈ A ∈

⋃
m<nAm},

3. Np ∩A = ∅ or Np = A for all singleton A ∈
⋃
m<nAm, and

4. diam(Np) < diam(A) for all non-singleton A ∈
⋃
m<nAm.

Choose An to be a minimal (finite) subcover of {Np : p ∈ K}.
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Since maxA∈An diam(A) ≤ 2−n, A will be a base.

Since also each An is finite, Nt(A) = ℵ0.

Since diam(A) < diam(B) for all m > n, A ∈ Am, and B ∈ An \ [K]1,

if Ai 3 U ) V ∈ Aj, then i ≤ j.

Since also each An is a minimal cover,

if Ai 3 U ) V ∈ Aj, then i < j.

Since also Ai 3 U ) V ∈ Aj and i < j imply U ⊃ V ,

U ) V ⇒ U ⊃ V for all U, V ∈ A.
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Finally, given a finite F ⊂ A and a non-repeating sequence (Un)n<ω
of elements of A, it suffices to find some Un with a strict superset

in A \ F.

Since (Un)n<ω is non-repeating and each An is finite, we may pass

to a subsequence (Vn)n<ω of (Un)n<ω that diam(Vn)→ 0.

We may then pass to a subsequence (Wn)n<ω such that (Wn)n<ω
converges to a singleton {p} (in the (compact) Vietoris hyperspace).

Since (Wn)n<ω is non-repeating, p is not an isolated point.

Hence, p has a neighborhoods Y, Z ∈ A \ F such that Y ( Z.

For m sufficiently large, Wm ⊂ Y ( Z.
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Let X be a compact space of uncountable weight κ. Without loss

of generality, X is a subspace of [0,1]κ.

Let A be a base of X of size κ and consisting only of nonempty

open Fσ sets.

(To find such a base, take any base Z of size κ and, for each finite

subcover of Z, choose a refining finite cover by open Fσ sets; take

A to be the union these refinements.)

Given a function f and a set I, let f � I denote the restriction of f to

dom(f) ∩ I. Given a set E of functions, let E � I denote {f � I : f ∈
E}. Given a set J of sets of functions, let J � I = {E � I : E ∈ J}.

We say that E ⊂ X is supported on a set I if, for all p, q ∈ X, if

p � I = q � I, then p ∈ E ⇔ q ∈ E.

By compactness of X, every open Fσ set has a countable support.
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Assume that there is a continuous surjection h : 2λ → X.

Let (Mα)α<κ be a long ω1-approximation sequence with A, h ∈M0.

Letting Aα = A ∩Mα, each U ∈ Aα is supported on Mα.

Why? Each U ∈ A ∩Mα is supported on some countable C. Mα

knows this; hence, we may choose C ∈Mα; hence, C ⊂Mα.

For each α < κ, Aα �Mα is a base of X �Mα.

Why? Given p ∈ X, if R is an open product of rational intervals such

that p ∈ R and R∩X is supported on Mα, then R∩X is supported on

a finite F ⊂Mα and there is a closed product Q of rational intervals

such that p ∈ Q ⊂ R and Q∩X is suppported on F . Mα knows about

a finite cover of Q ∩ X by elements of A with union contained in

R ∩ X. Hence, p ∈ A ⊂ R ∩ X and A ∈ A ∩Mα for some A in this

cover. Hence, p �Mα ∈ A �Mα ⊂ (R∩X) �Mα and A �Mα is open in

X �Mα because A is supported on Mα.
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We may choose Yα ⊂ Aα �Mα to be an efficient base of X �Mα.

(Why? Every compact space with countable weight is metrizable.)

Because each A ∈ Aα is supported on Mα, there is a unique Wα ⊂ Aα
such that Yα =Wα �Mα.

Given E a subset of a poset P , let ↑E =
⋃
{p↑: p ∈ E}.

Let Vα =Wα\ ↑W<α where W<α =
⋃
β<αWβ.

Let Uα = {U ∈ Vα : ∃V ∈ Vα U ⊂ V }.

Assume that minp∈X πχ(p,X) = κ.

We claim that U = U<κ is a base of X with Noetherian type ℵ0.
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First, we show that U is a base.

Given p ∈ A ∈ A, we need to find U ∈ U such that p ∈ U ⊂ A. Choose

α < κ such that A ∈ Mα. Then A is supported on Mα just as each

U ∈ Uα is, so it suffices to show that Uα �Mα is a base of X �Mα.

Uα is a downward-closed subset of Wα. Therefore, Uα � Mα is a

downard-closed subset of the base Wα � Mα. Hence, it suffices to

show that Uα �Mα covers X �Mα.

Because A<α is too small to contain a local π-base, Mα knows about

a finite cover of X by elements of A\ ↑A<α. We have p ∈ T ∈ Mα

for some T in this cover.

T �Mα is open, so we may choose R,S ∈ Wα �Mα such that

p �Mα ∈ R ⊂ S ⊂ T �Mα.

R meets all the requireements for being in Uα �Mα.
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It remains to show that Nt(U) = ℵ0.

For this, we must actually use the continuous surjection h : 2λ → X.

Let B denote the clopen algebra Clop(2λ).

Since Wα �Mα is an efficient base, for each α and W ∈ Wα, there is

an Eα,W ∈ B ∩Mα such that

h−1[W ] ⊂ Eα,W ⊂
⋂
{h−1[Z] : W ⊂ Z ∈ Wα}

because only there are only finitely many Z as above.

Letting Eα = {Eα,W : W ∈ Wα}, we have Nt(Eα) = ℵ0.

Why? If Eα,R ( Eα,Sm 6= Eα,Sn for all m < n < ω, then, for all m < ω

and Sm ⊂ T ∈ Wα, we have R ⊂ T . By the definition of efficient

base, there are infinitely many T as above, in contradiction with

Nt(Wα) = ℵ0.
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Let Dα = {Eα,U : U ∈ Uα}. We have Nt(Dα) = ℵ0 because Dα ⊂ Eα.

Let C = B∩↑{h−1[U ] : U ∈ U}.

Let Cα = C ∩Mα. Note that Dα ⊂ Cα.

Letting D = D<κ, we claim that Nt(D) = ℵ0.

To prove this, it suffices to show that, for all α < κ and H ∈ C<α,

1. Cα ⊂↑Dα,

2. H ↑∩D<α is finite, and

3. H ↑∩Dα = ∅.

To be continued...
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